
The Impact of Display-rich Environments for Enhancing Task Parallelism and Group Awareness in Advanced Collaboration Environments

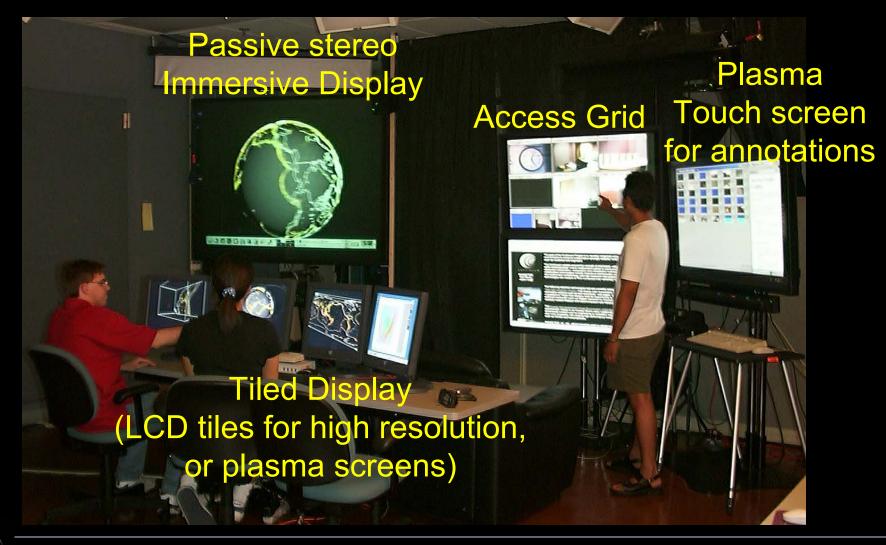
> WACE'03 June 22, 2003 Kyoung Shin Park

Amplified Collaboration Environment

 Amplified Collaboration Environments (ACEs) are distributed Project Rooms (or war rooms) which are enhanced with advanced visualization displays and computation.

War room (Olson & Olson)

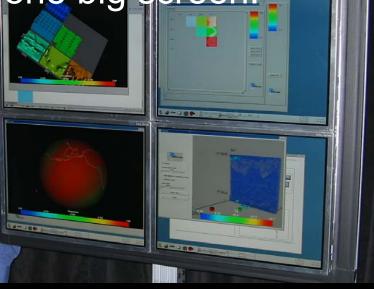
Amplified Collaboration Environment



Motivation: Maximally Co-located Project Rooms or Warrooms

- Study of 9 project rooms
 - Comparison of war room groups with norm showed performance of war room group well above corporate average
 - Characteristics of war room
 - Persistence of information
 - Spatiality of human interaction and deictic reference
 - Group awareness
 - Immediacy of access to information and experts

The Continuum at EVL : ACE for Collaborative Scientific Investigation



Electronic Visualization Laboratory (EVL) University of Illinois at Chicago

continuum

Tiled LCD Display

- Treat tiled display as a large digital "corkboard" on which information can be posted permanently for long term collaborative work.
- SpaceGlider as a remote control of all Continuum displays as if one big screen.

Iterative Design Studies of using the Continuum for Intensive Collaborative Work

- Iterative improvement of 2 networked Continuum spaces.
- Observe and explore design issues for interaction of lots of displays and multiple simultaneous inputs.
- Observe how display-rich environments affect group awareness and parallelism in distance collaborations.
- Provide Access Grid community with an understanding of how people might work as the AG begins to bring in more than just video conferencing.

Overview of Study Methods

- 1 pilot study and 4 iterative design studies *with system configuration variations*.
- 19 students (all subjects participated in two studies).
- A group of 3~4 students was distributed in 2 Continuum spaces and performed a set of collaborative scientific tasks:
 - Web-based search and information fusion.
 - Information visualization of multivariate statistical data.
 - Collaborative brainstorming and design.
- Measurements
 - Observational notes; Video recording; Pre- and Post- test survey; Group interview; Data logging on computer usage.

Pilot Study

- A group of 3 students performing 3 collaborative tasks: concentration game, info search, and info viz
- System Configuration (Day1 Distributed)
 - Access Grid
 - Shared Whiteboard via NetMeeting
 - Projection Display & KVM switcher (for group discussion)
 - Shared Tiled Display (1x4 format; 2x2 format) & Switcher
 - 1 keyboard and mouse per site (NetMeeting model)
- System Configuration (Day2 Co-located)
 - Whiteboard

continuum

- Projection Display & KVM switcher
- Shared Tiled Display (1x4 format) & Switcher

1 keyboard and mouse per user

Observations – Pilot Study Usage Patterns of Continuum Technologies

- Sense of ownership for the resources (e.g. grab and use different tile for individual workspaces - visual access to all the workspaces but input access was not shared)
- Tiled display offered multiple individual workspaces while maintaining necessary awareness between distributed users; useful for multiple linked views and side-by-side comparison
- Need to provide individual input per user for parallel work.
- Projection display used 1~2 times when students wanted to examine the patterns of data in a bigger format in info viz; Shared touch screen was used only for recording answers
- Treat Continuum's displays as one big screen (e.g. cut-and-paste); Flexible tiled display that can project up to single
 Iarge high-resolution data visualization
 Electronic Visualization Laboratory (EVL) University of Illinois at Chicago

Design Study 1 : Enhancing the Continuum to support the illusion of seamless displays

- System Configuration
 - Access Grid (4 camera sources & 2 microphones in full-AG setting; 1 camera and microphone in mini-AG setting)
 - Shared Whiteboard via NetMeeting
 - Shared Tiled Display (2x2 format)
 - SpaceGlider (connecting 4-node Tiled Display)
 - Individual keyboard and mouse per user
 - Physical layout (eliminate Projection Display)

Observations – Design Study 1

- Wanted more microphones and cameras in mini-AG setting!
- Shared whiteboard conflicts between remote participants
- Shared tiled display (distributed corkboard mechanism)
 - Casual glancing over at others (e.g. to get search strategy)
 - But, not supported awareness of group task progress
- SpaceGlider mouse sharing problem
 - Mouse identification & Multiple mice conflicts
- Data transfer between displays

continuu

- Desire to cut-and-paste texts
- Desire to move the window from one tile screen to another (Users treated TD as one continuous display)
- Read-and-write collaboration (via voice channel)
- Using pen/paper to transfer notes from TD to WB

Design Study 2: Introducing Tablet PC for individual input control and Improving mini-AG setting

- System Configuration
 - Access Grid (4 camera sources & 2 microphones in full-AG setting; 2 cameras & 2 microphones & a magnifying filter on the close-up camera in mini-AG setting)
 - Shared Whiteboard via NetMeeting
 - Shared Tiled Display (distributed corkboard mechanism)
 - SpaceGlider (connecting Tiled Display and Whiteboard)
 - Tablet PCs (screen echo)
 - Physical layout

Observations – Design Study 2

- Improved mini-AG setting helped increase interaction between remote users; But, users suggested reducing video sources
- Shared whiteboard conflicts; conflict resolution using video
- Shared tiled display (as workspaces for remote collaboration)
- Tablet PCs (as personal workspaces)
 Reduced users' casual glancing on the shared tiled display
- SpaceGlider mouse sharing problem
- Users felt no continuity of the workspace (due to SpaceGlider connecting between TD and WB)
- Data transfer between displays
 - Cut-and-paste; Move the window from one display to another; Read-and-write collaboration (via voice channel)

<u>— Using Tablet PC to transfer notes from TD to WB</u> Electronic Visualization Laboratory (EVL) University of Illinois at Chicago Design Study 3 : Enhancing the Continuum to support the flexible shared workspace for easy transition between individual work and group work

- System Configuration
 - Access Grid (4 camera sources & 2 microphones in full-AG setting; 2 cameras & 2 microphones & a magnifying filter on the close-up camera in mini-AG setting)
 - Shared Whiteboard via NetMeeting
 - Flexible Shared Tiled Display (distributed corkboard mechanism and full-screen; distinct background colors)
 - Switcher (jump between 4 tiles and whiteboard)
 - Tablet PCs (screen echo)
 - Physical layout

continuu

Observations – Design Study 3

- Increased number of overhear/help/collaboration between remote users over AG (may because of user's second time use of the system); Better performance (time & quality of work)
- Increased volume of shared whiteboard usages; Speaking a plan loud or using video sources for resource sharing
- Flexible shared tiled display

 Full-screen used for group discussion and personal uses
- Tablet PCs (as individual workspaces)
- Fewer mouse conflicts by Switcher; Users liked Switcher
- Data transfer between displays
 - Read-and-write collaboration
 - Still request for cut-and-paste (when moving large texts)

— Disappeared desire to move the window

Design Study 4 : Evaluating a presentation model for the shared workspace

- System Configuration
 - Access Grid (4 camera sources & 2 microphones in full-AG setting; 2 cameras & 2 microphones & a magnifying filter on the close-up camera in mini-AG setting)
 - Shared Whiteboard via NetMeeting
 - Presentation-model Tiled Display (only single individual's workspace is shared at a time; distinct background colors)
 - Switcher (jump between individual's tile and whiteboard)
 - Tablet PCs (screen echo)
 - Physical layout

continuum

Observations – Design Study 4

- Performance degraded as compared to Study3 groups.
- More two local pairs collaborative work & just inform remote partners about answers or task progress
- Presentation-model tiled display
 - This model provided more private workspace & no casual glancing over at others.
 - 'Show me' pattern (e.g. one asked another to show your workspace or one informed others about showing my workspace)
 - Wanted the shared tiled display (distributed corkboard model) back!
- Tablet PCs (as individual workspaces)
- Liked Switcher against SpaceGlider

continuum

Data transfer between displays (e.g. cut-and-paste)

Discussion:

Summary of 4 Iterative Design Studies

- Study1
 - Shared tiled display & individual keyboard & SpaceGlider
 - They used TD for various purposes (multiple views side-byside, glancing over at others' work); need close-up view
- Study2 (to address resolution problem)
 - Shared tiled display & TabletPC & SpaceGlider
 - Tablet as personal workspace; TD for remote collaboration.
- Study3 (to address size problem)
 - Flexible shared tiled display & Tablet PC & Switcher
 - They can still work on Tablet when it is maximized.
- Study4 (to compare with shared tiled display model)
 - Presentation-model tiled display & TabletPC & Switcher
 - They want more resolution to display more data side-by-

side! & Somewhat reduced interaction between members. Electronic Visualization Laboratory (EVL) University of Illinois at Chicago

Discussion:

Task Parallelism and Group Awareness

- Task Parallelism
 - Number of input controls (one per site vs. one per user)
 - Task types (Mixed-mode vs. tightly coupled collaboration)
 - Group working styles (work together vs. divided work)
 - Need awareness support when user's working in parallel
- Group Awareness

continuu

- SpaceGlider mouse identification -> name tags
- Shared tiled display or whiteboard conflict -> audio/visual cue for indicating who is using shared resources
- Task progress awareness problem -> group activity history
- Awareness support by user's casual glancing and fully visible group work activities over shared tiled display.
- Overhearing between remote users and displaying spatiality of human interaction over AG.

Discussion :

Video Conferencing and Multi-users Shared Input Control

- Video Conferencing
 - Audio! (collaboration halt by audio fails and repair by using text chat)
 - Video sources (how to position camera? one collaborator <u>wide-angle</u> close-up view; additional views of shared resources for conveying spatial references)
 - A group as a whole used all video sources.
 - Video source placement issue need to be explored
- Multi-users Shared Input Control
 - SpaceGlider mouse sharing problem (accidental intrusion)
 - Give turn-taking protocol instead of Take for SpaceGlider?
 - Switcher is good for multiple users' sharing resources
 - A sense of ownership for the shared resources when using Switcher

Discussion:

Private/Public Workspace and Display-rich Environment UI

Private and Public Workspace

continuum

- Public workspace (e.g. Shared WB, Shared tiled display) provides information fully visible and supports awareness
- Personal workspace (e.g. TabletPC)
- Private to public mechanism (i.e. Presentation model) was not good for Continuum's tiled display setting
- Some users requested private (not shared) workspace, mainly for email.
- Display-rich Environment User Interface
 - One continuous display (e.g. cut-and-paste, moving the window from one display to another, SpaceGlider)
 - Used various channels (e.g. Tablet/paper, shared notes, verbal) to move data between displays
 - Proximity of displays (e.g. putting them closer together)

Conclusion

- Iterative design studies with the technology variations
 - SpaceGlider vs. Switcher (multi-user shared input control)
 - Screen-less keyboard/mouse vs. Tablet PC (proximity of display)
 - Shared tiled display (distributed corkboard model) vs.
 Flexible shared tiled display vs.
 Presentation-model tiled display (power-point presentation mechanism)
- Shared tiled display (distributed corkboard mechanism)
 - Supported parallel work and group awareness between distributed sites
 - used for multiple linked views and side-by-side comparison

continuum

Explored design issues for display-rich environment user
 interface and advanced awareness tool
 Electronic Visualization Laboratory (EVL) University of Illinois at Chicago